Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Quantile is the Most Informative ? Maximum Entropy Quantile Regression ∗

This paper studies the connections among quantile regression, the asymmetric Laplace distribution, and the maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we develop a maximum entropy quantile regr...

متن کامل

Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression

This paper studies the connections among quantile regression, the asymmetric Laplace distribution, maximum likelihood and maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we propose an estimator bas...

متن کامل

Quantile maximum likelihood estimation of response time distributions.

We introduce and evaluate via a Monte Carlo study a robust new estimation technique that fits distribution functions to grouped response time (RT) data, where the grouping is determined by sample quantiles. The new estimator, quantile maximum likelihood (QML), is more efficient and less biased than the best alternative estimation technique when fitting the commonly used ex-Gaussian distribution...

متن کامل

EXTREMAL QUANTILE REGRESSION 3 quantile regression

Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...

متن کامل

3 : Maximum Likelihood / Maximum Entropy Duality

In the previous lecture we defined the principle of Maximum Likelihood (ML): suppose we have random variables X1, ..., Xn form a random sample from a discrete distribution whose joint probability distribution is P (x | φ) where x = (x1, ..., xn) is a vector in the sample and φ is a parameter from some parameter space (which could be a discrete set of values — say class membership). When P (x | ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2010

ISSN: 1556-5068

DOI: 10.2139/ssrn.1695619